docker run -itd -p 9200:9200 -e PLUGINS="appbaseio/dejavu" itzg/elasticsearch
View the value of Max map count
$ cat /proc/sys/vm/max_map_count 65530
Reset the value of Max map count
$ sysctl -w vm.max_map_count=262144 vm.max_map_count = 262144
Start container again
$ docker start 42d6
# Basic configuration for our connector
name=sink-elastic-twitter-distributed
connector.class=io.confluent.connect.elasticsearch.ElasticsearchSinkConnector
# We can have parallelism here so we have two tasks!
tasks.max=2
topics=elasticsearch-topic
# the input topic has a schema, so we enable schemas conversion here too
key.converter=org.apache.kafka.connect.json.JsonConverter
key.converter.schemas.enable=true
value.converter=org.apache.kafka.connect.json.JsonConverter
value.converter.schemas.enable=true
# ElasticSearch connector specific configuration
# # http://docs.confluent.io/3.3.0/connect/connect-elasticsearch/docs/configuration_options.html
connection.url=http://172.17.0.3:9200
type.name=kafka-connect
# because our keys from the topics are null, we have key.ignore=true
key.ignore=true
# These are standard kafka connect parameters, need for ALL connectors
name=filestream-for-es
connector.class=org.apache.kafka.connect.file.FileStreamSourceConnector
tasks.max=1
# Parameters can be found here: https://github.com/apache/kafka/blob/trunk/connect/file/src/main/java/org/apache/kafka/connect/file/FileStreamSourceConnector.java
file=es.txt
topic=elasticsearch-topic
# Added configuration for the distributed mode:
key.converter=org.apache.kafka.connect.json.JsonConverter
key.converter.schemas.enable=true
value.converter=org.apache.kafka.connect.json.JsonConverter
value.converter.schemas.enable=true
docker run -p 1358:1358 -d appbaseio/dejavu
open http://localhost:1358/
https://www.confluent.io/hub/confluentinc/kafka-connect-elasticsearch
aws s3 cp ~/Downloads/confluentinc-kafka-connect-elasticsearch-11.1.10.zip s3://broadcast-videos/